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ADDENDUM 

1/N expansion for the Yukawa potential revisited: I1 

Ashok Chatterjee 
Department of Theoretical Physics, Indian Association for the Cultivation of Science, 
Jadavpur, Calcutta 700032, India 

Received 31 July 1985 

Abstract. Using the form prescribed by Moreno and Zepeda for the N-dimensional Yukawa 
potential and employing the method of I /  N expansion we have obtained in a recent paper 
the energies of the ground state and the first excited state of a three-dimensional Yukawa 
potential. In the present addendum we introduce a modified prescription for the N -  
dimensional Yukawa potential which enables us also to calculate the energies of the higher 
angular momentum states. Our results are in very good agreement with the accurate 
numerical values. 

It is well known that the Yukawa potential plays an important role in various branches 
of physics. Unfortunately, this potential does not admit an exact solution and therefore 
various approximate analytic and numerical methods (Hulthen and Laurikainen 1951, 
Rogers er a1 1970, McEnnen et a1 1976, Gazeau and Maquet 1978, Grant and Lai 
1979, Dutta er a1 1985 and references therein) have been employed over the past several 
years to obtain its energy spectrum. Recently, Moreno and Zepeda (1984) have applied 
the 1 /N  expansion technique to solve the Schrodinger equation with a Yukawa 
potential, V (  r )  = - ( a /  r )  e-br and have proposed an approximate analytic formula for 
the ground state energy which is in very good agreement with the numerical results. 
They have also shown that the 1/N expansion for the ground state energy is not 
convergent when p ( = 9b/4a)  approaches 1. This leads to an intriguing controversy 
over the very applicability of the method and it is this aspect of the problem that has 
motivated our recent investigation (Chatterjee 1985, hereafter referred to as I). In I, 
we have calculated the energies of the ground state and the first excited state of a 
particle bound to a Yukawa potential following the method of Mlodinow and Shatz 
(1982). By collecting terms of the same order in p we have shown that the 1 / N  
expanded energy can in fact, be reckoned as a series in powers of p, whereupon the 
awkward divergence problem disappears altogether. We have furthermore shown that 
the results provided by the method of 1 / N  expansion is identical to those obtained 
by using the hypervirial equations with the Hellman-Feynman theorem (Grant and 
Lai 1979) and the analytic perturbation theory (McEnnen et al 1976). But the form 
of the N-dimensional Yukawa potential as proposed by Moreno and Zepeda and 
followed in I could be used only for s states. In the present addendum we give a 
modified prescription for the Yukawa potential to obtain energies for the higher angular 
momentum states also. 

The N-dimensional Schrodinger equation in spherical polar coordinates (in units 
m = h = 1) is given by 
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where L is the angular momentum operator in N dimensions. Now substituting 

Y ( r )  = r-(N-1)’2u(r) Y,,,,(n) 

where &,(Cl) is an eigenfunction of L2 belonging to the eigenvalue ( l +  
using the following prescription for the Yukawa potential: 

r 

we obtain from ( 1 )  

-- - ( 1  - l / k ) ( l - 3 / k )  -‘exp( -mbr) ]u( r )=  Eu(r)  
2 dr2 dZ u ( r ) + k 2 [  8r2  r k Z  

where k = N + 21, a’ = a /  k2.  The leading-order energy eigenvalue is given 

where ro is obtained by minimising E,. 

u ( r )  =e*(”’ 

Let us now define x = r - ro and substitute 

in (4) which then reduces to a Riccati equation. Next, expanding the energy E and 
the first derivative of the function @(x) in powers of l / k  and then equating the terms 
of the same order in k, we end up with a set of recurrence relations which can be 
solved to yield the higher-order corrections. The energy and the radial wavefunction 
corresponding to the choice ( 6 )  are then given by 

+ g - Q ( k Z  - k ) g 2 + & ( k 4  - k3 - k 2 +  k ) g 3  
E 2 _-  
a 2 - -  (k-1)2 

- &( k6 - $k’ + 5k4 + 2k3 - i k 2  + $ k ) g 4 + .  , 

( k  - h 3 a 3  
r3 + . . , 

36 
x r 2 -  

where 

( 3 + 2 1 ) 2  b 
g = 7 ; .  

For N = 3  which is the dimension of interest, the screening parameter g is given by 
g = b/ a. In the Coulomb limit ( b  = 0) we get 

2a2 E = - -  
( k - 1 ) 2  ( 9 )  

It is interesting to note that the expressions ( 9 )  and (10) reproduce the exact energies 
and radial wavefunctions for the three-dimensional Coulomb potential for the states 
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that are nodeless in the region 0 < r < CO and that behave as r' at r = 0. These states 
are given by n-1-1 = O .  Since the eigenfunctions of a Yukawa potential may be 
thought of as perturbed Coulomb wavefunctions, we expect that the number of nodes 
associated with the radial wavefunctions of a Yukawa potential will again be determined 
by ( n  - I - 1). Therefore the energy eigenvalues for the states Is, 2p, 3d, etc, may be 
obtained from (7). The results are 

E IS =-a2(f -g+1 4g 2-4g3+Eg4+. . . )  

EZp= - ~ ' ( i - g + & ~ - 5 g ~ + ? g ~ + .  . .) (1lb)  
E3d=-a2(&-g+qg  21 2 -  2 1 g 3 + y g 4 + .  . .). 

(110) 

(1lc) 

Next we choose u ( r )  = (x-X:=,C'"'k-")  exp(O(x)) which corresponds to the 
states for which the n-1-1 = 1. In general, the choice u ( r )  = 
I I ~ ~ , ( x - X F = ~ C $ ) ~ - ~ )  exp(O(x)) corresponds to ns, ( n + l ) p ,  (n+2)d,  (n+3)f,  etc. 
For 2s and 3p, we obtain 

(12a) 

(12b) 

E2,=-a2( i -g+3g 2 3  -7g +...) 

E3p=-a2(&-g+-;i-g 25 2 -  30g3+. . .). 

From (11) and (12) we now calculate the energies of the states Is, 2s, 2p, 3p and 
3d (in atomic units) for different values of the screening parameter g (see table 1). 
Our results are in fair agreement with the accurate numerical values obtained by Rogers 
et a1 (1970). It is also clear that, for a given n, the states with higher 1 will, in general, 
have higher energy. However, in the Coulomb limit the accidental 1 degeneracy is 
restored. 

The author is grateful to Professor C K Majumdar for useful conversations. He also 
wishes to thank Miss Sukla Mukhopadhyay for critically reading the manuscript. 

Table 1. Energy eigenvalues (in atomic units). First line, l / N  expansion; second line, 
accurate numerical results of Rogers et al (1970). 

g 1s 2s 2P 3P 3d 
~ ~~ 

0 - 1.000 0 -0.250 0 - 0.250 0 -0.111 1 -0.111 1 
(Coulomb) - 1.000 0 -0.250 0 - 0.250 0 -0.111 1 -0.111 1 
0.002 - 0.996 01 - 0.246 02 - 0.246 02 -0.107 16 -0.107 15 

- 0.996 0 - 0.246 0 - 0.246 0 -0.107 2 -0.107 2 

- 0.990 0 - 0.240 1 - 0.240 1 -0.101 4 -0,101 4 
0.01 - 0.980 15 - 0.230 58 - 0.230 49 - 0.092 36 - 0.092 12 

- 0.980 1 - 0.230 6 - 0.230 5 -0.092 31 -0.092 12 
0.02 - 0.960 59 -0.212 29 -0.211 93 - 0.075 63 - 0.075 04 

- 0.960 6 - 0.212 3 -0.211 9 - 0.075 70 - 0.075 03 
0.025 - 0.95092 - 0.203 52 - 0.202 99 - 0.067 99 -0.067 18 

- 0.950 9 - 0.203 6 - 0.203 0 -0.068 16 - 0.067 15 
0.05 - 0.903 63 - 0.063 25 -0.161 55 -0.034 86 - 0.347 77 

- 0.903 6 -0.163 5 -0.161 5 -0.037 12 - 0.033 83 

0.005 - 0.990 04 - 0.240 15 - 0.240 12 -0.101 42 -0.101 37 
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